Phonetic alignment: speech synthesis based vs. hybrid HMM/ANN
نویسندگان
چکیده
In this paper we compare two different methods for phonetically labeling a speech database. The first approach is based on the alignment of the speech signal on a high quality synthetic speech pattern, and the second one uses a hybrid HMM/ANN system. Both systems have been evaluated on French read utterances from a speaker never seen in the training stage of the HMM/ANN system and manually segmented. This study outlines the advantages and drawbacks of both methods. The high quality speech synthetic system has the great advantage that no training stage is needed, while the classical HMM/ANN system easily allows multiple phonetic transcriptions. We deduce a method for the automatic constitution of phonetically labeled speech databases based on using the synthetic speech segmentation tool to bootstrap the training process of our hybrid HMM/ANN system. The importance of such segmentation tools will be a key point for the development of improved speech synthesis and recognition systems.
منابع مشابه
On the impact of phoneme alignment in DNN-based speech synthesis
Recently, deep neural networks (DNNs) have significantly improved the performance of acoustic modeling in statistical parametric speech synthesis (SPSS). However, in current implementations, when training a DNN-based speech synthesis system, phonetic transcripts are required to be aligned with the corresponding speech frames to obtain the phonetic segmentation, called phoneme alignment. Such an...
متن کاملAutomatic Phonetic Alignment and Its Confidence Measures
In this paper we propose the use of an HMM-based phonetic aligner together with a speech-synthesis-based one to improve the accuracy of the global alignment system. We also present a phone durationindependent measure to evaluate the accuracy of the automatic annotation tools. In the second part of the paper we propose and evaluate some new confidence measures for phonetic annotation.
متن کاملDeep Learning Techniques in Tandem with Signal Processing Cues for Phonetic Segmentation for Text to Speech Synthesis in Indian Languages
Automatic detection of phoneme boundaries is an important sub-task in building speech processing applications, especially text-to-speech synthesis (TTS) systems. The main drawback of the Gaussian mixture model hidden Markov model (GMMHMM) based forced-alignment is that the phoneme boundaries are not explicitly modeled. In an earlier work, we had proposed the use of signal processing cues in tan...
متن کاملInvestigation of Frame Alignments for GMM-based Text-prompted Speaker Verification
The frame alignment acts as an important role in GMM-based speaker verification. In text-prompted speaker verification, it is common practice to use the transcriptions to align speech frames to phonetic units. In this paper, we compare the performance of alignments from hidden Markov model (HMM) and deep neural network (DNN), using the same training data and phonetic units. We incorporate a pho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998